124 research outputs found

    SAGE 2-Umkehr case study of ozone differences and aerosol effects from October 1984 to April 1989

    Get PDF
    A comparison of 1262 cases of coincident ozone profiles derived from 666 Umkehrs at 17 different stations and 901 SAGE 2 profiles within 1000 km and 12 hours between October 1984 and April 1989 indicates the following layer percentage differences with 2-sigma error bars: layer three 14.6 plus/minus 3.3 percent, layer four 17.6 plus/minus 1.1 percent, layer five -1.3 plus/minus 0.5 percent, layer six -5.7 plus/minus 0.7 percent, layer seven -1.0 plus/minus 0.7 percent, layer eight 4.2 plus/minus 0.7 percent, and layer nine 6.8 plus/minus 1.2 percent. Comparing SAGE 2-Umkehr differences to SAGE 1 version 5.5-Umkehr differences shows SAGE 2 higher than or equal to SAGE 1 relative to Umkehr in all layers except layer three. Adjustment for this bias would produce trends derived from SAGE 2-SAGE 1 differences and Umkehr observations in the 1980s more nearly equal to each other in layers six, seven, and eight. A possible explanation of these differences is a systematic shift in the reference altitude between SAGE 1 and SAGE 2, but there is no independent evidence of this. While the shape of the vertical profile of differences at 17 individual Umkehr stations (mostly in mid-latitudes) is generally consistent at all stations except at Poker Flat, Seoul, and Lauder, significant variation does exists among the stations. The profile of mean difference is similar to previously observed differences between Umkehr and both SAGE 2 and SBUV and also to an eigenvector analysis, but with site-dependent amplitude discrepancies. Because of the close correspondence of stratospheric aerosol optical depth at the SAGE 2-measured 0.525 micron wavelength and the extrapolated 0.32 Umkehr wavelength determined in this study, we use the 0.525 micron data to determine the aerosol effect of Umkehr profiles. The aerosol errors to the Umkehr ozone amounts in percent ozone amount per 0.01 stratospheric aerosol optical depth range from plus 2 percent in layer six to minus 3 percent in layer nine. These results agree with previous theoretical and empirical studies within their respective error bounds in layers nine, eight, and five. The result in layer six differs significantly from previous works. In view of the fact that SAGE 2 and Umkehr produce different ozone retrievals in layers eight and nine and because the intra-layer correlation of SAGE 2 ozone and aerosol in layers eight and nine in non-zero, one must exercise some caution in attributing the entire SAGE 2-Umkehr differences in the upper layers to an aerosol effect

    Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data

    No full text
    International audienceThis study investigates anomalous ozone distributions over cloudy areas in Nimbus-7 (N7) and Earth-Probe (EP) TOMS version-7 data and analyzes the causes for ozone anomaly formation. A 5°-longitude by 5°-latitude region is defined to contain a Positive Ozone Anomaly (POA) or Negative Ozone Anomaly (NOA) if the correlation coefficient between total ozone and reflectivity is ?0.5 or ?? 0.5. The average fractions of ozone anomalies among all cloud fields are 31.8+/?7.7% and 35.8+\?7.7% in the N7 and EP TOMS data, respectively. Some ozone anomalies are caused by ozone retrieval errors, and others are caused by actual geophysical phenomena. Large cloud-height errors are found in the TOMS version-7 algorithm in comparison to the Temperature Humidity Infrared Radiometer (THIR) cloud data. On average, cloud-top pressures are overestimated by ~200 hPa (THIR cloud-top pressure ? 200 hPa) for high-altitude clouds and underestimated by ~150 hPa for low-altitude clouds (THIR cloud-top pressure ?750 hPa). Most tropical NOAs result from negative errors induced by large cloud-height errors, and most tropical POAs are caused by positive errors due to intra-cloud ozone absorption enhancement. However, positive and negative errors offset each other, reducing the ozone anomaly occurrence in TOMS data. Large ozone/reflectivity slopes for mid-latitude POAs show seasonal variation consistent with total ozone fluctuation, indicating that they result mainly from synoptic and planetary wave disturbances. POAs with an occurrence fraction of 30?60% occur in regions of marine stratocumulus off the west coast of South Africa and off the west coast of South America. Both fractions and ozone/reflectivity slopes of these POAs show seasonal variations consistent with that in the tropospheric ozone. About half the ozone/reflectivity slope can be explained by ozone retrieval errors over clear and cloudy areas. The remaining slope may result from there being more ozone production because of rich ozone precursors and higher j-values over high-frequency, low-altitude clouds than in clear areas. Ozone anomalies due to ozone retrieval errors have important implications in TOMS applications such as tropospheric ozone derivation and analysis of ozone seasonal variation

    Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data

    Get PDF
    This study investigates anomalous ozone distributions over cloudy areas in Nimbus-7 (N7) and Earth-Probe (EP) TOMS version-7 data and analyzes the causes for ozone anomaly formation. A 5°-longitude by 5°-latitude region is defined to contain a Positive Ozone Anomaly (POA) or Negative Ozone Anomaly (NOA) if the correlation coefficient between total ozone and reflectivity is <u>></u> 0.5 or <u><</u> -0.5. The average fractions of ozone anomalies among all cloud fields are 31.8 ± 7.7% and 35.8 ± 7.7% in the N7 and EP TOMS data, respectively. Some ozone anomalies are caused by ozone retrieval errors, and others are caused by actual geophysical phenomena. Large cloud-height errors are found in the TOMS version-7 algorithm in comparison to the Temperature Humidity Infrared Radiometer (THIR) cloud data. On average, cloud-top pressures are overestimated by ~200 hPa (THIR cloud-top pressure <u><</u> 200 hPa) for high-altitude clouds and underestimated by ~150 hPa for low-altitude clouds (THIR cloud-top pressure <u>></u> 750 hPa). Most tropical NOAs result from negative errors induced by large cloud-height errors, and most tropical POAs are caused by positive errors due to intra-cloud ozone absorption enhancement. However, positive and negative errors offset each other, reducing the ozone anomaly occurrence in TOMS data. Large ozone/reflectivity slopes for mid-latitude POAs show seasonal variation consistent with total ozone fluctuation, indicating that they result mainly from synoptic and planetary wave disturbances. POAs with an occurrence fraction of 30--60% occur in regions of marine stratocumulus off the west coast of South Africa and off the west coast of South America. Both fractions and ozone/reflectivity slopes of these POAs show seasonal variations consistent with that in the tropospheric ozone. About half the ozone/reflectivity slope can be explained by ozone retrieval errors over clear and cloudy areas. The remaining slope may result from there being more ozone production because of rich ozone precursors and higher photolysis rates over high-frequency, low-altitude clouds than in clear areas. Ozone anomalies due to ozone retrieval errors have important implications in TOMS applications such as tropospheric ozone derivation and analysis of ozone seasonal variation

    Tropical tropospheric ozone derived using Clear-Cloudy Pairs (CCP) of TOMS measurements

    No full text
    International audienceUsing TOMS total-ozone measurements over high-altitude cloud locations and nearby paired clear locations, we describe the Clear-Cloudy Pairs (CCP) method for deriving tropical tropospheric ozone. The high-altitude clouds are identified by measured 380 nm reflectivities greater than 80% and Temperature Humidity InfraRed (THIR) measured cloud-top pressures less than 200 hPa. To account for locations without high-altitude clouds, we apply a zonal sine fitting to the stratospheric ozone derived from available cloudy points, resulting in a wave-one amplitude of about 4 DU. THIR data is unavailable after November 1984, so we extend the CCP method by using a reflectivity threshold of 90% to identify high-altitude clouds and remove the influence of high-reflectivity-but-low-altitude clouds with a lowpass frequency filter. We correct ozone retrieval errors associated with clouds, and ozone retrieval errors due to sun glint and aerosols. Comparing CCP results with Southern Hemisphere ADditional OZonesondes (SHADOZ) tropospheric ozone indicates that CCP tropospheric ozone and ozonesonde measurements are highly consistent. The most significant difference between CCP and ozonesonde tropospheric ozone can be explained by the low Total Ozone Mapping Spectrometer (TOMS) retrieval efficiency of ozone in the lower troposphere

    Stratospheric observations of CH_3D and HDO from ATMOS infrared solar spectra: Enrichments of deuterium in methane and implications for HD

    Get PDF
    Stratospheric mixing ratios of CH_3D from 100 mb to 17 mb (≈ 15 to 28 km) and HDO from 100 mb to 10 mb (≈ 15 to 32 km) have been inferred from high resolution solar occultation infrared spectra from the Atmospheric Trace MOlecule Spectroscopy (ATMOS) Fourier-transform interferometer. The spectra, taken on board the Space Shuttle during the Spacelab 3 and ATLAS-1, -2, and -3 missions, extend in latitude from 70°S to 65°N. We find CH_3D entering the stratosphere at an average mixing ratio of (9.9±0.8) × 10^(−10) with a D/H ratio in methane (7.1±7.4)% less than that in Standard Mean Ocean Water (SMOW) (1σ combined precision and systematic error). In the mid to lower stratosphere, the average lifetime of CH_3D is found to be (1.19±0.02) times that of CH_4, resulting in an increasing D/H ratio in methane as air “ages” and the methane mixing ratio decreases. We find an average of (1.0±0.1) molecules of stratospheric HDO are produced for each CH_3D destroyed (1σ combined precision and systematic error), indicating that the rate of HDO production is approximately equal to the rate of CH_3D destruction. Assuming negligible amounts of deuterium in species other than HDO, CH_3D and HD, this limits the possible change in the stratospheric HD mixing ratio below about 10 mb to be ±0.1 molecules HD created per molecule CH_3D destroyed

    Stratosphere-to-Troposphere Transport Revealed by Ground-based Lidar and Ozonesonde at a Midlatitude Site

    Get PDF
    This paper presents ozone structures measured by a ground-based ozone lidar and ozonesonde at Huntsville, Alabama, on 27-29 April 2010 originating from a stratosphere-to-troposphere transport event associated with a cutoff cyclone and tropopause fold. In this case, the tropopause reached 6 km and the stratospheric intrusion resulted in a 2-km thick elevated ozone layer with values between 70 and 85 ppbv descending from the 306-K to 298-K isentropic surface at a rate of 5 km day1. The potential temperature was provided by a collocated microwave profiling radiometer. We examine the corresponding meteorological fields and potential vorticity (PV) structures derived from the analysis data from the North American Mesoscale model. The 2-PVU (PV unit) surface, defined as the dynamic tropopause, is able to capture the variations of the ozone tropopause estimated from the ozonesonde and lidar measurements. The estimated ozone/PV ratio, from the measured ozone and model derived PV, for the mixing layer between the troposphere and stratosphere is approximately 41 ppbv/PVU with an uncertainty of approximately 33%. Within two days, the estimated mass of ozone irreversibly transported from the stratospheric into the troposphere is between 0.07 Tg (0.9 10(exp33) molecules) and 0.11 Tg (1.3 10(exp33) molecules) with an estimated uncertainty of 59%. Tropospheric ozone exhibited enormous variability due to the complicated mixing processes. Low ozone and large variability were observed in the mid-troposphere after the stratospheric intrusion due to the westerly advection including the transition from a cyclonic system to an anticyclonic system. This study using high temporal and vertical-resolution measurements suggests that, in this case, stratospheric air quickly lost its stratospheric characteristics once it is irreversibly mixed down into the troposphere

    Seasonal Variations of Water Vapor in the Lower Stratosphere Inferred from ATMOS/ATLAS-3 Measurements of H2O and CH4

    Get PDF
    Stratospheric measurements of H2O and CH4 by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer on the ATLAS-3 shuttle flight in November 1994 have been examined to investigate the altitude and geographic variability of H2O and the quantity H = (H2O + 2CH4) in the tropics and at mid-latitudes (8 to 49 deg N) in the northern hemisphere. The measurements indicate an average value of 7.24 +/- 0.44 ppmv for H between altitudes of about 18 to 35 km, corresponding to an annual average water vapor mixing ratio of 3.85 +/- 0.29 ppmv entering the stratosphere. The H2O vertical distribution in the tropics exhibits a wave-like structure in the 16- to 25-km altitude range, suggestive of seasonal variations in the water vapor transported from the troposphere to the stratosphere. The hygropause appears to be nearly coincident with the tropopause at the time of observations. This is consistent with the phase of the seasonal cycle of H2O in the lower stratosphere, since the ATMOS observations were made in November when the H2O content of air injected into the stratosphere from the troposphere is decreasing from its seasonal peak in July-August

    Detection of a tropospheric ozone anomaly using a newly developed ozone retrieval algorithm for an up-looking infrared interferometer

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): D06304, doi:10.1029/2008JD010270.On 2 June 2003, the Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI) recorded an infrared spectral time series indicating the presence of a tropospheric ozone anomaly. The measurements were collected during an Atmospheric Infrared Sounder (AIRS) validation campaign called the 2003 AIRS BBAERI Ocean Validation Experiment (ABOVE03) conducted at the United States Coast Guard Chesapeake Light station located 14 miles due east of Virginia Beach, Virginia (36.91°N, 75.71°W). Ozone retrievals were performed with the Kurt Lightner Ozone BBAERI Retrieval (KLOBBER) algorithm, which retrieves tropospheric column ozone, surface to 300 mbar, from zenith-viewing atmospheric thermal emission spectra. KLOBBER is modeled after the AIRS retrieval algorithm consisting of a synthetic statistical regression followed by a physical retrieval. The physical retrieval is implemented using the k-Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) to compute spectra. The time series of retrieved integrated ozone column on 2 June 2003 displays spikes of about 10 Dobson units, well above the error of the KLOBBER algorithm. Using instrumentation at Chesapeake Light, satellite imaging, trace gas retrievals from satellites, and Potential Vorticity (PV) computations, it was determined that these sudden increases in column ozone likely were caused by a combination of midtropospheric biomass burning products from forest fires in Siberia, Russia, and stratospheric intrusion by a tropopause fold occurring over central Canada and the midwestern United States.NASA for its support through grant NAG5- 1156-7 for AIRS Validation and grant NNG04GN42G for development of AIRS trace gas products, and through a subcontract with JPL on the AIRS Project prime contract NAS7-03001 for continuing optimization and validation of AIRS trace gas products.
    corecore